Definition: Finding a simultaneous solution to 2 linear equations in 2 variables - values for both variables that make both equations true - is called solving a 2х2 system of linear equations.

Example of a linear system of 2 equations in 2 variables

Sample 2x2 linear system: \left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right.

The solution to this system is   (\color{purple}{x},\color{teal}{y})=(\color{purple}{1},\color{teal}{2}) .
Why is this a solution? Because - when we
substitute \color{purple}{x=1} and \color{teal}{y=2} , both equations are "true".
\begin{array}{c} \color{purple}{1}\color{blue}{+}\color{teal}{2}\color{blue}{ \cdot 2 \,\mathop = \limits^?\, 5} \\ \color{blue}{1 + 4 \,\mathop = \limits^?\, 5} \\ \color{blue}{5 \,=\, 5} \\ \end{array}      \begin{array}{c} \color{red}{2\cdot} \color{purple}{1} \color{red}{- } \color{teal}{2}\color{red}{ \,\mathop = \limits^?\, 0} \\ \color{red}{2 - 2 \,\mathop = \limits^?\, 0} \\ \color{red}{0 = 0} \\ \end{array}
Graphically, we have:
This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.

Regulation: A solution to the system is every intersection (touching) point of the 2 lines.

InterActivity   Directions for InterActivity

1. Look at the two lines a and b. They intersect at the point E. Check that E satisfies both equations.
If you know how, solve the system: a and b and check that you get E..

2. Click and drag the lines or the points A, B, C or D. If they intersect at one point, E is "good".

Look at the left (where the formulas are) to check that E is a point!

3. Click and drag the points A, B, C or D so that a and b are parallel. They are parallel when E says "undefined".

Notice that a and b are the same except for the constant after the "=" sign.

4. Click and drag the points A, B, C or D so that a and b coincide.

Notice that a and b are completely the same and that E is undefined.

This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
Solutions to 2x2 linear systems   Graphs!

A linear system can have:

•  Exactly one solution. The lines intersect in exactly one point. Examples below in "Solution Methods".

When solving this system you get numbers for x and y. Answer is: (number for x, number for y)

•  No solution. The lines are parallel and never touch. The system is inconsistent.

When solving this system you get something stupid like 3=5. Answer is: No solution.

•  Infinitely many solutions. The lines coincide. They are the same line. Every point on this line is a solution. More?

When solving this system you get stuck with 0=0. Answer is: Many solutions.
Exactly one solution: (1,2)

\left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right.

No solution

\left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{x + 2y = 2} \\ \end{array} \right.

Infinitely many solutions

\left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x + 4y = 10} \\ \end{array} \right.

This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
Solution methods

A linear system can be solved using any of the following three methods:

  • The substitution method.    Example
  • The addition or elimination method   Example
  • Cramer's rule (determinants) Example
The substitution method. Solve: \left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right.
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{blue}{x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{blue}{x = 5-2y} \\ \color{navy}{2x - y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{2\cdot\color{blue}{(5-2y)} - y = 0} \\ \end{array} \right. \Leftrightarrow
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{10-4y - y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{10-5y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{10=5y} \\ \end{array} \right. \Leftrightarrow
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{y=2} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x = 5-2y} \\ \color{red}{5y=10} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{blue}{x = 5-2 \cdot} \color{red}{2} \\ \color{red}{y=2} \\ \end{array} \right. \Leftrightarrow
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{blue}{x = 5-4} \\ \color{navy}{y=2} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{blue}{x = 1} \\ \color{navy}{y=2} \\ \end{array} \right.   Solution is: (1,2)
More Mathcasts
The addition method. Solve: \left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right.
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{blue}{x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x + 2y = 5} \\ \color{red}{4x - 2y = 0} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x + 2y = 5} \\ \color{purple}{5x+0y =5} \\ \end{array} \right. \Leftrightarrow
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{navy}{x + 2y = 5} \\ \color{purple}{5x=5} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{navy}{x + 2y = 5} \\ \color{purple}{x=1} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{purple}{1} \color{blue}{+2y=5} \\ \color{navy}{x=1} \\ \end{array} \right. \Leftrightarrow
-------------------------------------------------------------------------------
\left\{ \begin{array}{l} \color{blue}{2y=4} \\ \color{navy}{x=1} \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \color{blue}{y=2} \\ \color{navy}{x=1} \\ \end{array} \right.   Solution is: (1,2)
More Mathcasts
Cramer's rule. Solve: \left\{ \begin{array}{c} \color{blue}{\,\,x + 2y = 5} \\ \color{red}{2x - y = 0} \\ \end{array} \right. = \left\{ \begin{array}{c} \color{blue}{1}x + \color{#FF8000}{2}y = \color{orange}{5} \\ \color{red}{2}x \color{#800080}{ - 1} y = \color{#00BB80}{0} \\ \end{array} \right.
-------------------------------------------------------------------------------
D = \left| {\matrix{ \color{blue}{1} & \color{#FF8000}{2} \cr \color{red}{2} & \color{#800080}{ - 1} \cr } } \right| = \color{blue}{1} \cdot \color{#800080}{ ( - 1)} - \color{red}{2} \cdot \color{#FF8000}{2} = - 1 - 4 = - 5
-------------------------------------------------------------------------------
\color{purple}{D_x} = \left| {\matrix{ \color{orange}{5} & \color{#FF8000}{2} \cr \color{#00BB80}{0} & \color{#800080}{ - 1} \cr } } \right| = \color{orange}{5} \cdot \color{#800080}{ ( - 1)} - \color{#00BB80}{0} \cdot \color{#FF8000}{2} = - 5 - 0 = - 5
-------------------------------------------------------------------------------
\color{teal}{D_y} = \left| {\matrix{ \color{blue}{1} & \color{orange}{5} \cr \color{red}{2} & \color{#00BB80}{0} \cr } } \right| = \color{blue}{1} \cdot \color{#00BB80}{0} - \color{red}{2} \cdot \color{orange}{5} = 0 - 10 = - 10
-------------------------------------------------------------------------------
x=\frac{\,D_x\,}{D}=\frac{-5}{-5}=1   y=\frac{\,D_y\,}{D}=\frac{-10}{-5}=2   Solution is: (1,2)
Metadata
Global 2x2 System of Equations
Brief Mathcasts and Interactivities to understand and practice solving systems of 2 equations in 2 variables (unknowns).
Grade 7-10    Interactivities start at 8th grade level on up
Strand Algebra; Expressions, Equations and Inequalities
Standard Algebra 1 3.1, Algebra 1 3.2, Algebra 1 3.3, ACT EE 28-32
Keywords system, linear system, variable, unknown, linear equation, elimination, addition, substitution
Comments none
Download  
Author LFS - contact - website
Type Freeware - Available for Offline and Online Use - Translatable (html)
Use Requires sunJava player

Related topics:


 Up one level

 


Page last modified on January 24, 2009, at 04:30 AM